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Abstract: In this paper, a stochastic continuous-time Markov chain (CTMC) model is
developed and analyzed to explore the dynamics of cholera. The multitype branching
process is used to compute a stochastic threshold for the CTMC model. Latin hypercube
sampling/partial rank correlation coefficient (LHS/PRCC) sensitivity analysis methods are
implemented to derive sensitivity indices of model parameters. The results show that the
natural death rate (µv) of a vector is the most sensitive parameter for controlling disease
outbreaks. Numerical simulations indicate that the solutions of the CTMC stochastic model
are relatively close to the solutions of the deterministic model. Numerical simulations
estimate the probability of both disease extinction and outbreak. The probability of cholera
extinction is high when it emerges from bacterial concentrations in non-contaminated/safe
water in comparison to when it emerges from all infected groups. Thus, any intervention
that focuses on reducing the number of infections at the beginning of a cholera outbreak is
essential for reducing its transmission.

Keywords: infectious disease; Latin hypercube sampling; multitype branching process;
partial rank correlation coefficients; stochastic model; stochastic threshold
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1. Introduction
Infectious diseases have a tremendous impact on human health. Thus, it is essential to

research the mechanisms of disease transmission and the control of diseases like cholera.
Controlling an infection and protecting human health require an understanding of the
dynamic nature of infectious illnesses [1]. Food-borne diarrheal illness, or cholera, is one
of the most serious infectious diseases [2]. Vectors, also known as carriers, include things
like house flies, ticks, mites, etc., which are also a means for food-borne diseases. Even
though cholera is mostly a waterborne disease, fly vectors can indirectly spread it [3].
Fly-carried cholera-causing bacteria are introduced into the food supply and contaminate
human meals [4,5]. Eating this tainted food exposes susceptible populations to cholera
infection [6]. House flies eat on, crawl over, and deposit their eggs on human food, which
is how they transmit cholera to humans [7]. One public health concern the WHO has
recognized is cholera [8]. The literature contains numerous investigations of theoretical and
clinical studies. Despite documentation [9], the public health of developing countries is still
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seriously endangered by cholera. The need to model cholera transmission is still crucial,
despite the fact that cholera has been studied extensively and despite prevention measures
being well established. Cholera still causes recurrent outbreaks, especially in low-resource
settings because of the effects of climate change (e.g., floods and droughts increasing
transmission risks), conflict and displacement (e.g., poorly sanitary refugee camps), and
urbanization and population growth (e.g., water and sanitation challenges) [10–12].

In epidemiology, mathematical modeling is essential for understanding and predicting
disease outbreaks [13]. A useful technique for understanding the transmission of diseases
is mathematical modeling, which may be used to predict future epidemics and provide
strategies for managing epidemics [14,15]. A disease’s epidemiological model may be
stochastic or deterministic. In the modeling of diseases, both kinds of models are helpful.
Deterministic models are mostly used because of their simple formulation and analysis of a
system of ordinary differential equations compared to stochastic models [16]. Deterministic
models can be used to predict whether or not a disease would spread based on the value
of the fundamental reproduction number. Deterministic models, on the other hand, are
unable to adequately represent the uncertainty and variability that real-life epidemics entail
because of environmental factors or demographic shifts, which is important when the initial
number of infected individuals is small [17]. Specifically, when an infectious individual
is introduced into an entirely susceptible community, there is a chance they may either
die or recover before infecting a substantial number of susceptible individuals [18,19]. For
sufficiently small populations, deterministic models are more challenging to estimate and
analyze, and they provide less information. In addition, trajectories in deterministic models
deviate from expected noise behavior due to random influences [20]. Owing to those draw-
backs, stochastic modeling of infectious diseases in both homogeneous and heterogeneous
populations arose as a substitute for deterministic models, mitigating some of the issues
associated with deterministic models when modeling epidemic diseases [21]. Stochastic
models are capable of handling randomness and thus can produce distinct results for each
input that is supplied. In deterministic models, an identical output is produced for each
input since they are unable to handle randomness [22]. Despite their benefits and potential
usefulness for systems with causal relationships and clearly stated rules, deterministic
models frequently fail to capture the unpredictability, uncertainty, and intricacy present in
numerous real-world systems. Because they offer a more adaptable and realistic method of
simulating such intricacy, stochastic systems are a valuable tool in many scientific and engi-
neering applications [23,24]. Stochastic models are preferred because disease transmission
in real life is highly random, even though deterministic models are mathematically easier
to analyze. A stochastic model is required for our study to capture cholera’s real-world
variability and predict both extinction and outbreak probabilities. Thus, it is crucial to
take into account a stochastic model in order to reflect the variability related to individual
dynamics (such as birth or death, transmission, and recovery), also known as demographic
variability [25]. The transmission of cholera through fly vectors is largely random because
of a number of circumstances, such as fly vectors’ contribution to Vibro cholera in the environ-
ment, parasite acquisition, human immune responses, and the effectiveness of treatments.
The continuous-time Markov chain (CTMC) stochastic model incorporates random events,
which makes it feasible to mimic these stochastic processes and represent the variability
seen in actual cholera dynamics. Cholera infection progression via fly vector transmission
involves discrete states of human, vector, and bacterial (pathogenic) populations [26]. It is
acceptable to use CTMC stochastic models to observe the dynamics of cholera infection
over time because they are useful for representing such distinct states and the transition
between them. Additionally, individual-level heterogeneity can be incorporated into the
CTMC stochastic model, allowing us to carry out host population simulations and capture
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the impact of heterogeneity on disease transmission and outcomes [27]. With respect to the
particular biological processes involved in cholera dynamics, CTMC stochastic models use
transition rates between states, which establish the likelihood of changing states. However,
the CTMC stochastic model can depict time-dependent events, such as the arrival of the
infected fly vector, the growth of the parasite, and the recovery processes. The stochastic
and continuous evolution of disease states over time can thus be described [27]. Cholera’s
complexity, stochasticity, and temporal dynamics are thus captured by the CTMC stochastic
models, making them appropriate for cholera research. Cholera transmission and infection
dynamics are more realistically represented using the CTMC stochastic model, which facili-
tates the simulation of discrete infection states, time-dependent events, and individual-level
variations. The value of the current state at time t determines the transition of any state
variable to the state i at time t, according to the Markov property, not the filtration or
process history. In the CTMC stochastic model, time is considered to be continuous, the
state variables are discrete-valued, and the process is time-homogeneous with the Markov
property [27].

In relation to the idea of ODE epidemiological dynamics, [25] developed the notion
of stochastic epidemic modeling. Her prominence was especially notable in stochastic
differential equations and continuous-time Markov chains. Stochastic thresholds depend
on the size of the population and the likelihood of disease extinction within each of the
multiple infectious subgroups [28]. The likelihood of a major disease outbreak for a single
group of infections is around 1 − (1/R0)

i, where R0 > 1 denotes the basic reproduction
number and i represents infectious individuals. A vector-borne disease’s activity might be
influenced by a specific time of year or seasonal change. As a result, seasonal fluctuation
and the initial population infection rate influence the likelihood of a disease outbreak,
which may occur periodically [29,30]. When the population is big enough and the basic
reproduction number is greater than one, the probabilities of a disease outbreak estimated
from stochastic CTMC models and branching process approximation coincide [31]. When
modeling epidemics, the CTMC model is preferable to deterministic models and the
measured trajectories follow expectations [32]. If both the host and vector populations
are smaller than 100, the branching process approximation might not produce a reliable
estimate [29,31]. The detail of branching process approximation is introduced in Section 3.1
of this paper. Several studies have been conducted to study the spread of cholera in
deterministic and stochastic model settings [21,33–36]. The stochastic CTMC model, with
varying parameter values, and the starting number of infected persons for cholera are
used to approximate the probability of an outbreak [33]. In the study of [36], a stochastic
population represented by a set of stochastic differential equations (SDEs) was used to
investigate the dynamics of cholera transmission. They examined how disease dynamics
behaved in deterministic and stochastic randomness-based models. They stated that
the stochastic perturbation is demonstrated to improve the stability of the disease-free
equilibrium when compared to the underlying deterministic model due to the fact that
stochastic extinction of the disease is an absorbing state. The authors of [21] analyzed the
SDEs’ cholera model, and they found that the stochastic solution fluctuates around the
solution of the ordinary differential equation model. The stochastic model of cholera has
been used in other studies [34,35] to simulate the population of bacteria in contaminated
water and human contact with the bacteria in the water supply. These studies focus on
how the disease spreads. However, none of the stochastic studies have considered the
impact of fly vectors in the transmission dynamics of cholera. Human and fly vector
heterogeneity can have a significant impact on the dynamics of cholera transmission. For
instance, the rate of contribution to Vibrio cholera in the environments by fly vectors, human
immunity, and treatment-seeking behaviors varies among individuals and populations. The
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fly vectors’ contribution to Vibrio cholera is stochastic with the frequency of contaminating
human meals and infectivity rates. Individual variations have also been noted in the
dynamics of immunity development, parasite proliferation, and immune responses [37,38].
Furthermore, interventions such as treatment plans (such as medication delivery and case
supervision) provide other sources of randomness and variability. A stochastic model
helps to investigate the biological complexity and variability of cholera dynamics. It also
provides a more accurate depiction of the behaviors of transmission, the outcomes of
infections, and the impact of interventions. The stochastic model contributes to a better
understanding of cholera epidemiology, prevention strategies, and the possible outcomes
of treatments in different scenarios by examining the probabilistic nature of the disease.
Thus, a stochastic model is well justified in studying cholera transmission dynamics due to
the biological foundations. No study has applied a stochastic CTMC model to study the
dynamics of cholera via fly vector transmission to the best of the knowledge the authors so
far. In this study, we formulate and analyze a stochastic CTMC model by extending the
deterministic model developed in [26] and apply the theory of the multitype branching
process to determine the probability of cholera extinction or outbreak.

The article is organized as follows: In Section 2, a deterministic cholera epidemic
model formulated by [26] is presented. In Section 3, the corresponding stochastic CTMC
model of cholera is formulated with the multitype branching process in Section 3.1 and
stochastic threshold in Section 3.2. Section 4 is devoted to the sensitivity analysis using Latin
hypercube sampling (LHS) and partial rank correlation coefficient (PRCC) procedures. In
Section 5, the results are presented, and their interpretation is examined. A brief discussion
of the findings is given in Section 6. Lastly, Section 7 provides a final summary of the
findings.

2. Model Formulation
This section introduces a deterministic cholera model formulated by [26]. In their

model, the human or host population is subdivided into four compartments, depending
on the epidemiological status of individuals, namely Sh(t), which denotes the number of
susceptible individuals; Ish(t), which denotes symptomatic infected individuals; Iah(t),
which denotes asymptomatic infected individuals; and Rh(t), which denotes recovered
individuals at any given time t. Similarly, the vector population is subdivided into three
compartments—susceptible vectors Sv(t), exposed vectors Ev(t), and infected vectors
Iv(t)—at any given time t. Bacterial concentrations in contaminated/unsafe water C(t) and
bacterial concentrations in non-contaminated/safe water P(t) are the bacterial (pathogenic)
population at any given time t. The parameters used in the model formulation are summa-
rized in Table 1. From the description of the dynamics of cholera, as shown in Figure 1, we
have the following system of non-linear differential equations [26]:

Table 1. Parameters and their descriptions of the model.

Parameter Description Unit

bh Birth or recruitment rate by human day−1

bv Birth or recruitment rate by vector day−1

µh Natural human death rate year−1

µv Natural vector death rate day−1

β Rates of ingesting vibrios from the safe environment by human day−1

k1 Concentration of the bacteria, i.e., vibrio cholerae in pure/safe water cells/day
k2 Concentration of the bacteria, i.e., vibrio cholerae in unsafe water cells/day
ξ1 Rate of shedding bacteria from Is(t) into the environment cell/ml per day
ξ2 Rate of shedding bacteria from Ia(t) into the environment cell/ml per day
α1 Rate of contribution to (Vibrio cholera) in the both environments by vectors cells mL−1d−1 per vector
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Table 1. Cont.

Parameter Description Unit

ϵ Modification parameter dimensionless
d Disease induced death rate dimensionless
γ1 Recovery rate of symptomatic infected individuals per day
γ2 Recovery rate of asymptomatic infected individuals per day
q Probability of new infected from Sh to be symptomatic dimensionless
r Probability of new infected from Sh to be asymptomatic in which r = 1 − q dimensionless
ρ Infectious rate of a vector dimensionless
λ1 Rates of ingesting vibrios from the non-contaminated/safe environment to vectors dimensionless
λ2 Rates of ingesting vibrios from the contaminated/unsafe environment to vector dimensionless
δ1 Vibrios net death rate in the contaminated/unsafe environment day−1

δ2 Vibrios net death rate in the non-contaminated/safe environment day−1

dSh
dt

= bh Nh −
βPSh

k1 + P
− µhSh,

dIsh
dt

=
qβPSh
k1 + P

− (µh + d + γ1)Ish,

dIah
dt

=
rβPSh
k1 + P

− (µh + γ2)Iah,

dRh
dt

= γ1 Ish + γ2 Iah − µhRh,

dSv

dt
= bv Nv −

λ1PSv

k1 + P
− λ2CSv

k2 + C
− µvSv, (1)

dEv

dt
=

λ1PSv

k1 + P
+

λ2CSv

k2 + C
− (µv + ρ)Ev,

dIv

dt
= ρEv − µv Iv,

dC
dt

= ξ1 Ish + ξ2 Iah + α1 Iv − δ1C,

dP
dt

= ϵα1 Iv − δ2P.
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Figure 1. Model flowchart showing the compartments.
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Reproduction Number

In epidemiology, the basic reproduction number, or R0, is an important parameter. It
is also known as the basic reproductive rate or basic reproductive ratio. A single primary
infectious case introduced into a whole susceptible population that is known to transmit
an average number of secondary infectious cases is referred to as a basic reproduction
number [39]. This parameter is useful for predicting the likelihood of an infectious disease
spreading across the population or not. To compute R0, the next generation matrix approach
is applied, as described in [40]. To obtain it, take the largest (dominant) eigenvalue value
(spectral radius) of [

∂Fi(E0)

∂Xi

][
∂Vi(E0)

∂Xi

]−1

, (2)

where Fi is the rate of appearance of a new infection in compartment i, Vi is the net
transition between compartments, E0 is the disease-free equilibrium and Xi stands for
the terms in which the infection is in progression, i.e., Ish(t), Iah(t), Ev(t), Iv(t), C(t),
and P in Equation (1). Hence, the basic reproduction number obtained in [26] was

as follows: R0 = R0h + R0v where quantities R0h =
√

α1ρbh βϵλ2(a1rξ2+a2qξ1)
K1K2a1a2δ1δ2

and R0v =

α1ρ(K1δ2λ2+K2δ1ϵλ1)
√

(bv)
3

K1K2δ1δ2

√
(a3µv)

3
are contributions of the human and vector/housefly infectious

classes, respectively.

3. Formulation of Continuous-Time Markov Chain (CTMC) Model
Numbers used in these stochastic models are integers rather than constantly changing

values because models with demographic variability reflect a discrete shift of individuals
within epidemiological classes rather than an average rate [18]. A stochastic CTMC cholera
model is thus developed in this study according to the assumptions of the deterministic
cholera model Equation (1), as time is continuous and the variables that are random
equivalent to the deterministic state variables are discrete. For convenience, we use the
same notation for the variables that are random and parameters in Equation (1) for the
deterministic model. Let Sh(t), Ish(t), Iah(t), and Rh(t) denote discrete random variables for
the number of individuals in the susceptible, symptomatic, asymptomatic, and recovered
host population classes, and let Sv(t), Iv(t), and Rv(t) denote discrete random variables for
the number of susceptible, exposed, and infected vector population classes at t ∈ [0,+∞),
respectively. Also, in the cholera deterministic model (Equation (1)), there are C(t) and
P(t), which denote the concentration of Vibrio cholerae in the contaminated/unsafe water
and non-contaminated/safe water at time t, respectively. However, C(t) and P(t) are not
compartment occupancies as the other ones, so their transition here is not considered in the
formulation of transitions [33]. Here, the variables Sh(t), Ish(t), Iah(t), Rh(t), Sv(t), Ev(t),
and Iv(t) take values in the finite state space {0, 1, 2, 3, · · · , G}, where G is the greatest
size of the entire population. According to the CTMC model, a state transition can happen
at any time t. All potential state transitions for the CTMC model are shown, along with the
rates at which they occur in Table 2.

The continuous-time stochastic process {X(t) = (Sh(t), Ish(t), Iah(t), Rh(t), Sv(t), Ev(t),
Iv(t) : t ∈ [0,+∞))} is a process that has multiple variables and a joint probability func-
tion [41,42]

P(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t) = Prob{Sh(t) = sh, Ish(t) = ish, Iah(t) = iah, Rh(t) = rh, Sv(t) = sv, Ev(t) = ev, Iv(t) = iv},
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which is homogenous in time and meets the Markov property, which states that the
process’s future state at time (t + ∆t) depends only on the present state of the process at
time t [18,41]. Hence,

P{[Sh(t + ∆t), Ish(t + ∆t), Iah(t + ∆t), Rh(t + ∆t), Sv(t + ∆t), Ev(t + ∆t), Iv(t + ∆t)] | [Sh(0), Ish(0), Iah(0), Rh(0), Sv(0), Ev(0), Iv(0)],

[Sh(∆t), Ish(∆t), Iah(∆t), Rh(∆t), Sv(∆t), Ev(∆t), Iv(∆t)], . . . , [Sh(t), Ish(t), Iah(t), Rh(t), Sv(t), Ev(t), Iv(t)]}
= P{[Sh(t + ∆t), Ish(t + ∆t), Iah(t + ∆t), Rh(t + ∆t), Sv(t + ∆t), Ev(t + ∆t), Iv(t + ∆t)] | [Sh(t), Ish(t), Iah(t), Rh(t), Sv(t), Ev(t), Iv(t)]}.

The Markov assumption states that the time until the next occurrence is exponentially
dispersed [18,41]. Depending on the notation used in [41], we obtain the stochastic process’s
infinitesimal transition probabilities X(t) = (Sh(t), Ish(t), Iah(t), Rh(t), Sv(t), Ev(t), Iv(t))
from state (sh, ish, iah, rh, sv, ev, iv) at time t to a new state (sh + l1, ish + l2, iah + l3, rh + l4, sv +

l5, ev + l6, iv + l7) at time [t + ∆t] as follows:

P(sh+l1,ish+l2,iah+l3,rh+l4,sv+l5,ev+l6,iv+l7),(sh , ish , iah , rh , sv , ev , iv)(∆t) = P{∆Sh(t) = l1, ∆Ish(t) = l2,

∆Iah(t) = l3, ∆Rh(t) = l4, ∆Sv(t) = l5, ∆Ev(t) = l6, ∆Iv(t) = l7
|Sh(t) = sh, Ish(t) = ish, Iah(t) = iah, Rh(t) = rh, Sv(t) = sv, Ev(t) = ev, Iv(t) = iv}

which are defined by

P(sh+l1,ish+l2,iah+l3,rh+l4,sv+l5,ev+l6,iv+l7),(sh , ish , iah , rh , sv , ev , iv)(∆t) =

bhNh∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (1, 0, 0, 0, 0, 0, 0),

µhSh(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (−1, 0, 0, 0, 0, 0, 0),
qβP(t)Sh(t)

k1+P(t) ∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (−1, 1, 0, 0, 0, 0, 0),
rβP(t)Sh(t)

k1+P(t) ∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (−1, 0, 1, 0, 0, 0, 0),

µh Ish(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0,−1, 0, 0, 0, 0, 0),

dIsh(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0,−1, 0, 0, 0, 0, 0),

γ1 Ish(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0,−1, 0, 1, 0, 0, 0),

µh Iah(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0,−1, 0, 0, 0, 0),

γ2 Iaĥ(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0,−1, 1, 0, 0, 0),

µhRh(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0,−1, 0, 0, 0),

bvNv(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0, 1, 0, 0),

µvSv(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0,−1, 0, 0),(
λ1P(t)

k1+P(t) +
λ2C(t)

k2+C(t)

)
Sv(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0,−1, 1, 0),

µvEv(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0, 0,−1, 0),

ρEv(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0, 0,−1, 1),

µv Iv(t)∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0, 0, 0,−1),

1 − Ω∆t + o(∆t), (l1, l2, l3, l4, l5, l6, l7) = (0, 0, 0, 0, 0, 0, 0),

o(∆t), otherwise,

where

Ω =


bhNh∆t + µhSh(t)∆t + qβP(t)Sh(t)

k1+P(t) ∆t + rβP(t)Sh(t)
k1+P(t) ∆t + µh Ish(t)∆t + dIsh(t)∆t + γ1 Ish(t)∆t

+µh Iah(t)∆t + γ2 Iah(t)∆t + µhRh(t)∆t + bvNv(t)∆t + µvSv(t)∆t +
(

λ1P(t)
k1+P(t) +

λ2C(t)
k2+C(t)

)
Sv(t)∆t

+µvEv(t)∆t + ρEv(t)∆t + µv Iv(t)∆t.

Applying the Markov property to the stochastic process and the infinitesimal transition
probabilities given above, we can express the state probabilities at time (t + ∆t) in terms of



Mathematics 2025, 13, 1018 8 of 26

the state probabilities at time t [43]. Thus, the state probabilities P(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t) satisfy
the following difference equation:

P(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t + ∆t) =P(sh−1,ish ,iah ,rh ,sv ,ev ,iv)(t)bhNh∆t

+ P(sh+1,ish ,iah ,rh ,sv ,ev ,iv)(t)µh(Sh + 1)∆t

+P(sh+1,ish−1,iah ,rh ,sv ,ev ,iv)(t)
(q − 1)βP(sh + 1)

k1 + P
∆t

+P(sh+1,ish ,iah−1,rh ,sv ,ev ,iv)(t)
(r − 1)βP(sh + 1)

k1 + P
∆t

+ P(sh ,ish+1,iah ,rh ,sv ,ev ,iv)(t)µh(ish + 1)∆t

+ P(sh ,ish+1,iah ,rh ,sv ,ev ,iv)(t)d(ish+ 1) ∆t

+ P(sh ,ish+1,iah ,rh−1,sv ,ev ,iv)(t)(γ1 − 1)(ish + 1)∆t

+ P(sh ,ish ,iah+1,rh ,sv ,ev ,iv)(t)µh(iah + 1)∆t (3)

+ P(sh ,ish ,iah+1,rh−1,sv ,ev ,iv)(t)(γ2− 1) (iah + 1)∆t

+ P(sh ,ish ,iah ,rh+1,sv ,ev ,iv)(t)µh(rh + 1)∆t

+ P(sh ,ish ,iah ,rh ,sv− 1,ev ,iv)(t)bvNv∆t

+ P(sh ,ish ,iah ,rh ,sv+1,ev ,iv)(t)µv(Sv + 1)∆t

+ P(sh ,ish ,iah ,rh ,sv+ 1,ev−1,iv)(t)
(
(λ1 − 1)P

k1 + P
+

(λ2 − 1)C
k2 + C

)
(Sv + 1)∆t

+ P(sh ,ish ,iah ,rh ,sv ,ev+1,iv)(t)µv(Ev + 1)∆t

+ P(sh ,ish ,iah ,rh ,sv ,ev+1,iv−1)(t)ρ(Ev + 1)∆t

+ P(sh ,ish ,iah ,rh ,sv ,ev ,iv+1)(t)µv(Iv + 1)∆t

+ P(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t)(1 − Ω)∆t + o(∆t)

Table 2. Stochastic continuous-time Markov chain (CTMC) model rate of changes.

Event State Transition [t → (t + ∆t)] Transition Transition Rate

Recruitment of Sh Sh → Sh + 1 (1, 0, 0, 0, 0, 0, 0)T bh Nh∆t + o(∆t)
Natural death of Sh Sh → Sh − 1 (−1, 0, 0, 0, 0, 0, 0)T µhSh∆t + o(∆t)

Quick progression for
Sh after infection Sh → Sh − 1, Ish → Ish + 1 (−1, 1, 0, 0, 0, 0, 0)T qβPSh

k1+P ∆t + o(∆t)

Slow progression for
Sh after infection Sh → Sh − 1, Iah → Iah + 1 (−1, 0, 1, 0, 0, 0, 0)T rβPSh

k1+P ∆t + o(∆t)

Natural death of Ish Ish → Ish − 1 (0,−1, 0, 0, 0, 0, 0)T µh Ish∆t + o(∆t)
Death of Ish due to disease Ish → Ish − 1 (0,−1, 0, 0, 0, 0, 0)T dIsh∆t + o(∆t)

Recovery of Ish Ish → Ish − 1, Rh → Rh + 1 (0,−1, 0, 1, 0, 0, 0)T γ1 Ish∆t + o(∆t)
Natural death of Iah Iah → Iah − 1 (0, 0,−1, 0, 0, 0, 0)T µh Iah∆t + o(∆t)

Recovery of Iah Iah → Iah − 1, Rh → Rh + 1 (0, 0,−1, 1, 0, 0, 0)2 γ2 Iah∆t + o(∆t)
Natural death of Rh Rh → Rh − 1 (0, 0, 0,−1, 0, 0, 0)T µhRh∆t + o(∆t)
Recruitment of Sv Sv → Sv + 1 (0, 0, 0, 0, 1, 0, 0)T bv Nv∆t + o(∆t)

Natural death of Sv Sv → Sv − 1 (0, 0, 0, 0,−1, 0, 0)T µvSv∆t + o(∆t)
Progression for Sv

after infection Sv → Sv − 1, Ev → Ev + 1 (0, 0, 0, 0,−1, 1, 0)T
(

λ1PSv
k1+P + λ2CSv

k2+C

)
∆t + o(∆t)

Natural death of Ev Ev → Ev − 1 (0, 0, 0, 0, 0,−1, 0)T µvEv∆t + o(∆t)
Progression of Ev Ev → Ev − 1, Iv → Iv + 1 (0, 0, 0, 0, 0,−1, 1)T ρEv∆t + o(∆t)

Natural death of Iv Iv → Iv − 1 (0, 0, 0, 0, 0, 0,−1)T µv Iv∆t + o(∆t)

To investigate the time evolution of (sh, ish, iah, rh, sv, ev, iv), we adjust the parameters
of Equation (3). Then. we take the limit as ∆t → 0. Following that, the forward Kolmogorov
differential equation is obtained as follows:
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dP(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t)
dt

=P(sh−1,ish ,iah ,rh ,sv ,ev ,iv)(t)bhNh

+ P(sh+1,ish ,iah ,rh ,sv ,ev ,iv)(t)µh(sh + 1)

+ P(sh+1,ish−1,iah ,rh ,sv ,ev ,iv)(t)
(
(q − 1)βP(sh + 1)

k1 + P

)
+ P(sh+1,ish ,iah−1,rh ,sv ,ev ,iv)(t)

(
(r − 1)βP(sh + 1)

k1 + P

)
(4)

+ P(sh ,ish+1,iah ,rh ,sv ,ev ,iv)(t)µh(ish + 1)

+ P(sh ,ish+1,iah ,rh ,sv ,ev ,iv)(t)d(ish + 1)

+ P(sh ,ish+1,iah ,rh−1,sv ,ev ,iv)(t)(γ1 − 1)(ish + 1)

+ P(sh ,ish ,iah+1,rh ,sv ,ev ,iv)(t)µh(iah + 1)

+ P(sh ,ish ,iah+1,rh−1,sv ,ev ,iv)(t)(γ2−1)(iah + 1)

+ P(sh ,ish ,iah ,rh+1,sv ,ev ,iv)(t)µh(rh + 1)

+ P(sh ,ish ,iah ,rh ,sv−1,ev ,iv)(t)bvNv

+ P(sh ,ish ,iah ,rh ,sv+1,ev ,iv)(t)µv(Sv + 1)

+ P(sh ,ish ,iah ,rh ,sv+1,ev−1,iv)(t)
(
(λ1 − 1)P

k1 + P
+

(λ2 − 1)C
k2 + C

)
(Sv + 1)

+ P(sh ,ish ,iah ,rh ,sv ,ev+ 1,iv)(t)µv(Ev + 1)

+ P(sh, ish, iah, rh, sv, ev + 1, iv − 1)(t)ρ(Ev + 1)

+ P(sh ,ish ,iah ,rh ,sv ,ev ,iv+1)(t)µv(Iv + 1)

+ P(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t)(1 − Ω)

− P(sh ,ish ,iah ,rh ,sv ,ev ,iv)(t)(Ω).

3.1. The Multitype Branching Process

The multitype branching process approximation is a powerful tool that provides
additional insights into the probability of reaching the disease-free equilibrium, especially
in early outbreak dynamics and near-extinction scenarios. The multitype branching process
is solely implemented to the infected groups in order to assess the dynamics of the non-
linear CTMC model, and it assumes that susceptible individuals are in the disease-free
equilibrium [18,28,44]. It is useful in computing the probabilities of disease extinction
or outbreak. In CTMC models, if there are a few infectious agents present at the start
of the disease outbreak, there is a chance that the disease will either die or spread [25].
The initial susceptible population must be sufficiently large at disease-free equilibrium
for the multitype branching process to occur. Thus, in this paper, we use S0

h = (bhNh)/µh

and S0
v = (bvNv)/µv [45]. The multitype branching process is homogenous in time and

independent of births (i.e., new infections) and deaths or recovery, since it is linearly
close to the disease-free equilibrium. Therefore, it would be possible to describe the
offspring-probability-generating functions for the birth and death of infected individuals.
The likelihood of a significant breakout or the extinction of a disease is then estimated
using these probability-generating functions [18,44]. The following assumptions underlie
the multitype branching process approximation used to compute the stochastic threshold
for the CTMC model [25]:

1. The behavior of each infectious individual is independent from that of other infectious
individuals.



Mathematics 2025, 13, 1018 10 of 26

2. Both the probability of recovery and the probability of transmitting an infection are
the same for each infectious individual.

3. The susceptible population is sufficiently large.

Let
{

Xji
}n

j=1 be the offspring random variables for type j ∈ { 0, 1, 2, 3, · · · , n}, so
that Xji is the number of offspring of type j generated by infectious individuals of type
i. The offspring-probability-generating function for infectious population Ii is defined if
there is initially one infectious individual at the beginning of the disease outbreak, e.g.,
I(0) = 1, and all other types are zero, Ij = 0. The offspring pgf fi : [0, 1]n → [0, 1] for type i
individuals given Ii(0) = 1 and Ij(0) = 0, j ̸= i is given as [19,45]:

fi(x1, x2, · · · , xn) =
∞

∑
un=0

∞

∑
un−1=0

. . .
∞

∑
u1=0

Pi(u1, u2, · · · , un)xu1
1 xu2

2 · · · xun
n , (5)

where
Pi(u1, u2, · · · , un) = Prob{X1i = u1, X2i = u2, · · · , Xni = un}.

is the probability that one infected individual of type i gives birth to uj individuals of
type j [18]. Equation (5) is used to find a n × n non-negative and irreducible expectation
matrix M =

[
mji

]
, where mji is the expected number of offsprings for individuals of type j

produced by an infective of type i. The elements of matrix M are obtained by differentiating
fi with respect to xj and then evaluating all the x variables at 1 [19,46], as follows:

mji =
∂ fi
∂xj

∣∣∣∣∣
x=1

. (6)

The probability of disease extinction or an outbreak is determined by the size of the
spectral radius of the expectation matrix M, ρ(M). If ρ(M) ≤ 1, then the probability of
disease extinction is one, as follows:

P0 = lim
t→∞

Prob{⃗I(t) =
−→
0 } = 1, (7)

and if ρ(M) > 1, then there exists a positive probability such that the disease persists in
host and vector populations, as follows:

P0 = lim
t→∞

Prob{⃗I(t) =
−→
0 } = xi1

1 xi2
2 · · · xin

n < 1, (8)

where (x1, x2, · · · , xn) is the offspring pgf’s unique fixed point, fi(x1, x2, · · · , xn) = xi and
0 < xi < 1, i = 1, 2, · · · , n [18,46]. For type i infectives, the value of xi represents the
probability of disease extinction, and the probability of an outbreak is [18,19]

1 − P0 = 1 − lim
t→∞

Prob{⃗I(t) =
−→
0 } = 1 − xi1

1 xi2
2 · · · xin

n . (9)

3.2. Stochastic Threshold for CTMC Model

In the CTMC stochastic model, the multitype branching process is applied to each
infectious class in order to formulate their probability-generating functions. The branch-
ing process, which is a birth and death process for Ish(t), Iah(t), Ev(t), Iv(t), C(t), and
P(t), can produce secondary infections. Therefore, the variable Rh(t) will not be con-
sidered in the branching process approximation. The bacterial concentrations in non-
contaminated/safe water (P(t)) are considered since the fly vector obtains an infection from
contaminated/unsafe environments and transmits to it after the susceptible population will
become infected from it [26]. Accordingly, in a stochastic CTMC cholera model, an outbreak



Mathematics 2025, 13, 1018 11 of 26

may not still die out due to chance, especially when initial bacterial concentrations are
high. The initial values for susceptible individuals and susceptible vectors are considered
to be the disease-free state points Sh(0) = bhNh/µh = S0

h and Sv(0) = bvNv/µv = S0
v,

respectively. The offspring-probability-generating functions (pgfs) for infectious classes are
obtained by applying the formula in Equation (5), evaluated at disease-free equilibrium.
Thus, the offspring-probability-generating function for Ish, given that Iah(0) = 0, Ev(0) = 0,
Iv(0) = 0, C(0) = 0, and P(0) = 0, is

f1(x1, x2, x3, x4, x5, x6) =
ξ1x5 + µh + d + γ1

µh + d + γ1 + ξ1
. (10)

The term ξ1/µh + d + γ1 + ξ1 represents the probability that a Vibrio cholera bacterium
is shed by a symptomatic infected individual into the environment, while the term
µh + d + γ1/µh + d + γ1 + ξ1 is the probability that the symptomatic infected human
can perish or recover before infecting other susceptible individuals, thus resulting in zero
infected humans.

The offspring-probability-generating function for Iah, given that Ish(0) = 0, Ev(0) = 0,
Iv(0) = 0, C(0) = 0, and P(0) = 0, is

f2(x1, x2, x3, x4, x5, x6) =
ξ2x5 + µh + γ2

µh + γ2 + ξ2
. (11)

The term ξ2/µh + γ2 + ξ2 describes the probability that a Vibrio cholera bacterium is shed
by an asymptomatic infected individual into the contaminated environment. The term
µh + γ2/µh + γ2 + ξ2 is the probability that an asymptomatic infected human can perish
or recover before infecting other susceptible individuals, thus resulting in zero infected hu-
mans.

The offspring-probability-generating function for Ev, given that Ish(0) = 0, Iah(0) = 0,
Iv(0) = 0, C(0) = 0, and P(0) = 0, is

f3(x1, x2, x3, x4, x5, x6) =
ρx4 + µv

µv + ρ
. (12)

The term ρ/µv + ρ represents the probability that a latently infected vector would suc-
cessfully spread the infection during their lifetime. The term µv/µv + ρ stands for the
probability that a latently infected vector would die before becoming infectious, leaving
zero latently infected and infectious vectors.

The offspring-probability-generating function for Iv, given that Ish(0) = 0, Iah(0) = 0,
Ev(0) = 0, C(0) = 0, and P(0) = 0, is

f4(x1, x2, x3, x4, x5, x6) =
α1x5 + ϵα1x6 + µv

µv + α1 + ϵα1
. (13)

The term α1/µv + α1 + ϵα1 denotes the probability that a Vibrio cholerae bacterium is directed
by the infected vector into the contaminated environment, while the term ϵα1/µv + α1 + ϵα1

is the probability modified by the parameter ϵ that a Vibrio cholera bacterium is directed by
the infected vector into the safe environment, resulting in susceptible individuals that are
successfully infected after consumption. The term µv/µv + α1 + ϵα1 is the probability that
the diseased vector will die before infecting a vulnerable individual, leaving no infectious
individual.
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The offspring-probability-generating function for C, given that Ish(0) = 0, Iah(0) = 0,
Ev(0) = 0, Iv(0) = 0, and P(0) = 0, is

f5(x1, x2, x3, x4, x5, x6) =
β1x3x5 + δ1

δ1 + β1
, (14)

where β1 = λ2Ŝv/k2 + Ĉ. The term β1/δ1 + β1 is the probability that the Vibrio cholera
bacterium from the contaminated water creates a latently infected vector. The term δ1/δ1 +

β1 is the probability that the vibrios of the contaminated water die.
Similarly, the offspring-probability-generating function for P, given that Ish(0) = 0,

Iah(0) = 0, Ev(0) = 0, Iv(0) = 0, and C(0) = 0, is

f6(x1, x2, x3, x4, x5, x6) =
β2x3x6 + δ2

δ2 + β2
, (15)

where β2 = λ1Ŝv/k1 + P̂. The term β2/δ2 + β2 is the probability that the Vibrio cholera
bacterium from safe water creates a latently infected vector. The term δ2/δ2 + β2 is the
probability that the vibrios in pure water die.

Using Equation (6), the 6 × 6 expectation matrix M of the offspring PGFs computed at
x = (x1, x2, x3, x4, x5, x6) = (1, 1, 1, 1, 1, 1) is given by

M =



∂ f1
∂x1

∂ f2
∂x1

∂ f3
∂x1

∂ f4
∂x1

∂ f5
∂x1

∂ f6
∂x1

∂ f1
∂x2

∂ f2
∂x2

∂ f3
∂x2

∂ f4
∂x2

∂ f5
∂x2

∂ f6
∂x2

∂ f1
∂x3

∂ f2
∂x3

∂ f3
∂x3

∂ f4
∂x3

∂ f5
∂x3

∂ f6
∂x3

∂ f1
∂x4

∂ f2
∂x4

∂ f3
∂x4

∂ f4
∂x4

∂ f5
∂x4

∂ f6
∂x4

∂ f1
∂x5

∂ f2
∂x5

∂ f3
∂x5

∂ f4
∂x5

∂ f5
∂x5

∂ f6
∂x5

∂ f1
∂x6

∂ f2
∂x6

∂ f3
∂x6

∂ f4
∂x6

∂ f5
∂x6

∂ f6
∂x6


x=1,

=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 β1

δ1+β1

β1
δ1+β1

0 0 ρ
µv+ρ 0 0 0

ξ
µh+d+γ1+ξ1

ξ2
µh+γ2+ξ2

0 α1
µv+α1+εα1

β1
δ1+β1

0

0 0 0 εα1
µv+α1+εα1

0 β2
δ2+β2


.

The stochastic threshold for cholera disease extinction or outbreak for the CTMC
epidemic model is the spectral radius of the expectation matrix, (M). The thresholds (M)

for the stochastic model and the basic reproduction number R0 for the deterministic model
are closely related [18]. Cholera dies if ρ(M) ≤ 1 or R0 ≤ 1. In deterministic models, cholera
persists if R0 > 1. However, in stochastic models, if ρ(M) > 1, there is a possibility for
cholera to die or persist, depending on the number of infectives at the beginning of disease
outbreak [19,44]. Thus, if ρ(M) > 1, there exist a fixed point (x1, x2, x3, x4, x5, x6) ∈ (0, 1)6

of the offspring-generating functions (10)–(15) that is used when writing the probability of
cholera extinction [18,28]. To obtain the fixed point, we set fi(x1, x2, x3, x4, x5, x6) = xi for
i = 1, 2, 3, 4, 5, 6 to obtain the following system of equations:
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ξ1x5 + µh + d + γ1

µh + d + γ1 + ξ1
= x1,

ξ2x5 + µh + γ2

µh + γ2 + ξ2
= x2,

ρx4 + µv

µv + ρ
= x3, (16)

α1x5 + ϵα1x6 + µv

µv + α1 + ϵα1
= x4,

β1x3x5 + δ1

δ1 + β1
= x5,

β2x3x6 + δ2

δ2 + β2
= x6.

Generally, due to the non-linearity of probability-generating functions, it is not easy to
obtain simple analytical expressions for the fixed points x1, x2, x3, x4, x5, and x6 of the
system of Equation (16) [46]. However, there are some special cases that can be considered
when trying to obtain these expressions. If γ1 = γ2 = ϵ = 0, we obtain

x1 =
µhβ1α1ρ + µ2

vδ1ξ1 + µvα1δ1ξ1 + µvδ1ρξ1 + α1β1dρ + α1δ1ρξ1

(µh + d + ξ1)α1β1ρ
,

x2 =
µhβ1α1ρ + µ2

vδ1ξ2 + µvα1δ1ξ2 + µvδ1ρξ2 + δ1ξ2α1ρ

(µh + ξ2)α1β1ρ
,

x3 =
µ2

vβ1 + µ2
vδ1 + µvα1β1 + µvα1δ1 + µvβ1ρ + µvδ1ρ + α1δ1ρ

β1(µ2
v + µvα1 + µvρ + α1ρ)

,

x4 =
µ2

vδ1 + µvα1δ1 + µvβ1ρ + µvδ1ρ + α1δ1ρ

ρ(µv + α1)β1
, (17)

x5 =

(
µ2

v + µvα1 + µvρ + α1ρ
)
δ1

α1β1ρ
,

x6 =
δ2β1

(
µ2

v + µvα1 + µvρ + α1ρ
)

µ2
vβ1δ2 − µ2

vβ2δ1 + µvα1β1δ2 − µvα1β2δ1 + µvβ1δ2ρ − µvβ2δ1ρ + α1β1β2ρ + α1β1δ2ρ − α1β2δ1ρ
.

Therefore, given the initial numbers of Ish(0), Iah(0), Ev(0), Iv(0), C(0), and P(0), the proba-
bility of extinction for cholera is approximated to be [25,28]

P0 = xIsh(0)
1 xIah(0)

2 xEv(0)
3 xIv(0)

4 xC(0)
5 xP(0)

6 .

Furthermore, the probability of an outbreak or disease persistence will be estimated by

1 − P0 = 1 − xIsh(0)
1 xIah(0)

2 xEv(0)
3 xIv(0)

4 xC(0)
5 xP(0)

6 .

4. Monte Carlo Sampling Technique (Sensitivity Analysis)
Monte Carlo sampling methods, commonly known as the LHS scheme, offer the

advantage of sampling parameters independently of one another [47]. Studies have mathe-
matically shown that LHS reduces variance in sensitivity measures and is more efficient
with fewer samples [48–50]. LHS biases and limitations can be successfully minimized by
using efficient sampling approaches, controlling correlations, ensuring sufficient coverage,
and confirming results with robustness checks. These strategies improve the sensitivity
analysis’s reliability to accurately capture the full range of variability in model parame-
ters [51]. LHS/PRCC sensitivity analysis is a useful technique that is frequently used in
uncertainty analysis in order to explore the entire parameter space of a deterministic or
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stochastic mathematical model with a minimum number of computer simulations [52]. It
also measures the degree of linear relationship between inputs and outputs in order to
provide PRCC indices, as per the methodology outlined by [53]. The LHS/PRCC sensitivity
analysis method explores the multi-dimensional parameter space globally to identify im-
portant parameters whose uncertainties contribute to the imprecision of the prediction. In
order to ascertain the degree of uncertainty that the LHS parameter adds to the prototype,
the partial rank correlation analysis provides a PRCC and proportional p-values [54]. The
parameter’s contribution to model predictions appears to be imprecise, based on both
its magnitude and statistical significance of the PRCC value. Time-varying sensitivity
for PRCC helps to determine if the significance of one parameter is noticeable over an
entire time interval during model dynamics. The output measure in this case is positively
correlated with a positive PRCC value, while the output measure and a negative PRCC
value are inversely correlated. PRCC values (>0.5 or <−0.5) and corresponding small
p-values (<0.05) are found for the most significant parameters. The closer the PRCC value
is to +1 or −1, the more of an impact the LHS parameter has on the outcome measure.
PRCC indices that are near to or equal to zero have no significance in the context of statis-
tical inference. A positive PRCC value indicates that an increase in a model’s parameter
leads to an increase in disease persistence, whereas a negative PRCC value indicates that
an increase in a model’s parameter leads to a higher likelihood of disease extinction. In
particular, disease persistence is significantly influenced by high positive PRCC values of
model parameters, whereas disease extinction may result from high negative PRCC values
of model parameters. The variable Iv(t) in Equation (1) is used to demonstrate the change
in PRCC indices with time. The maximum and minimum values are mandated for each of
the fifteen LHS parameters in Table 3 using baseline parameter values from Table 6, which
depend on our considered model. Note that the baseline value for each LHS parameter was
assigned to a value that is in the middle of the range between the parameter’s minimum
and maximum values.

Table 3. Baseline, minimum, and maximum values used in the LHS analysis.

Parameter Minimum Baseline Maximum

bh 5 10 12
bv 0.8 1.066 1.4
µh 0.001 0.005 0.015
µv 0.01 0.189 0.21
β 0.4 0.2143 0.6
k1 300 500 700
k2 300 500 700
d 0.005 0.015 0.1
γ1 0.08 0.14 0.8
γ2 0.08 0.5 0.8
q 0.1 0.7 0.9
r 0.1 0.3 0.5
ρ 0.2 0.8 1.4
λ1 0.01 0.1 1.1
λ2 0.1 0.9 1.3

In this section, we have conducted a sensitivity analysis to ascertain the robustness
of Equation (1) to parameter values to find the most significant parameters in the model
dynamics. The LHS scheme, also referred to as Monte Carlo sampling, makes use of a
uniform distribution to sample 1000 values for each input parameter within the range of
biologically realistic values described in Table 3. For the system of differential equations
described in Equation (1), 5000 model simulations were carried out by randomly selecting
paired sampled values for each LHS parameter. The impact of each parameter versus
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the selected variables and associated uncertainties on the system of Equation (1) was
elucidated by the LHS/PRCC analysis results. The LHS/PRCC analysis of C(t) and P(t) is
not taken into account because they are not compartment occupants like the others [33].
Figures 2 and 3 show the corresponding non-linear but unmodulated relation between
model state variables and each parameter of the PRCCs and corresponding p-values.
Moreover, the output is statistically significant if the corresponding p-value is less than 1%.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. PRCC and p-values’ plot for the host population.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. PRCC and p-values’ plot for the vector population.

Figures 2 and 3 visually represent the PRCC indices, highlighting that µv (natural
vector death rate), λ2 (rates of ingesting vibrios from the contaminated/unsafe environment
to vector), and ρ (infectious rate of a vector) on outputs have strong inverse relationship.
Conversely, parameters like bh (birth or recruitment rate by human) and k1 (concentration
of the bacteria, i.e., Vibrio cholerae in pure/safe water) demonstrate the direct relationship
with the model outputs. These findings suggest the important variables to be considered
for effective control strategies. We perform a multilinear regression analysis of the ranks
attained to examine the regression coefficients for the consequence measures (i.e., total
infected vectors (Iv)) and the LHS parameters. PRCC values are gathered in order to
determine the degree of correlation between the LHS parameter and each consequence
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measure, as these regression coefficients demonstrate the model’s sensitivity to the LHS
parameters. Figure A1 in Appendix A shows the PRCC plots for infected vectors. The plots
include the PRCC value and p-value for total infected vectors. The residuals for the ranked
LHS parameter values are plotted on the y-axis in Figure A1. We have also plotted the
residuals for the ranked total infected vectors on the x-axis of Figure A1. Furthermore, take
note of the correlation between different LHS factors, as shown by the PRCC graph for the
shown consequence measure.

Analysis of the PRCC Results

The PRCC diagram results are summarized in Tables 4 and 5. The p-values (orange)
and PRCC values (blue) of the significant uncertainty factors are both highlighted in these
tables. Here, (*) is used to indicate potential contributions (PRCC values: [0.5 to 0.6) or
[−0.5 to −0.6), (**) is employed to determine the most likely sources of ambiguity (PRCC
values: [0.6 to 0.8) or [−0.6 to −0.8), and (***) is employed to identify the most likely sources
of uncertainty (PRCC values: [0.8 to 1) or [−0.8 to −1)). From Tables 4 and 5, we note that
the most significant LHS parameters for the consequence measure are µv (death rate of
the vector), λ2 (rates of ingesting vibrios from the contaminated/unsafe environment to
vector), and ρ (infectious rate of a vector).

From Tables 4 and 5, it is also evident that the PRCC values of µv are higher than those
of the other parameters. It is concluded that µv is the most prominent parameter in the
considered model. A higher value of µv reduces the environmental load of the pathogen
and, consequently, secondary infections, whereas a low µv value allows for prolonged
bacterial survival, increasing the likelihood of exposure and reinfection. µv may be a
robust and effective cholera control strategy in urban areas with poor sanitation where
environmental contamination is widespread and cholera transmission dominates.

Table 4. PRCC output for host population.

Parameter Susceptible Host Symptomatic Infected Host Asymptomatic Infected Host Recovered Host

PRCC p-Value PRCC p-Value PRCC p-Value PRCC p-Value

bh ** 0.7535 0.0000 0.4283 0.0042 0.4309 0.0000 * 0.5046 0.0000
bv 0.1576 0.0185 0.0418 0.7600 −0.2570 0.9410 0.0558 0.5389
β −0.4014 0.0025 −0.1005 0.8662 −0.0122 0.8177 0.0779 0.0321
µh −0.1259 0.0273 0.0855 0.2005 −0.0829 0.0404 −0.4158 0.0000
µv 0.1189 0.8939 −0.0432 0.6285 −0.0318 0.8019 −0.0198 0.7931
k1 * 0.5398 0.0000 0.0412 0.0439 0.0074 0.1090 −0.0840 0.8826
k2 −0.1047 0.1621 0.1417 0.4204 −0.1213 0.9300 0.0744 0.2116
d −0.0579 0.7610 −0.1256 0.9011 0.2264 0.7434 −0.2496 0.6980
γ1 0.0279 0.8319 ** −0.6513 0.0000 −0.1096 0.1561 0.0906 0.3970
γ2 −0.0230 0.0887 0.1271 0.9193 ** −0.6970 0.0000 0.1463 0.0225
q −0.0036 0.9353 ** 0.7157 0.0000 0.0032 0.7452 ** 0.6174 0.0000
r 0.1621 0.6989 0.0110 0.9443 * 0.5783 0.0000 0.3404 0.0034
ρ 0.0835 0.7512 −0.0689 0.7135 0.0370 0.1711 −0.0775 0.5989
λ1 −0.2122 0.6659 −0.1954 0.2812 −0.1288 0.4233 −0.1247 0.1364
λ2 0.0024 0.5170 0.0900 0.1984 0.1317 0.7777 −0.0021 0.8717
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Table 5. PRCC output for vector population.

Parameter Susceptible Vector Exposed Vector Infected Vector

PRCC p-Value PRCC p-Value PRCC p-Value

bh 0.1413 0.6219 0.0589 0.5298 0.0682 0.9323
bv 0.4100 0.0003 0.2490 0.1324 0.2058 0.0337
β 0.0612 0.7242 0.1691 0.8022 0.1323 0.9197
µh 0.1030 0.5741 −0.0870 0.0607 −0.1261 0.5811
µv −0.1624 0.7934 −0.2921 0.0003 *** −0.9619 0.0000
k1 0.2046 0.2723 0.1345 0.2141 −0.1076 0.7521
k2 −0.0139 0.0133 0.1257 0.6322 −0.0952 0.2889
d 0.0189 0.8463 0.0564 0.9443 −0.0528 0.9874
γ1 −0.1497 0.7102 0.0203 0.4841 −0.1793 0.0917
γ2 −0.0522 0.1407 −0.0808 0.3676 −0.0199 0.1977
q −0.1101 0.1940 0.0893 0.1631 0.1097 0.7107
r −0.0424 0.4411 −0.0320 0.9273 −0.0933 0.2789
ρ 0.1212 0.8836 *** −0.8114 0.0000 0.0693 0.4613
λ1 −0.3137 0.0017 0.0812 0.8010 −0.0869 0.7332
λ2 *** −0.8658 0.0000 0.2257 0.0007 0.2082 0.1380

5. Numerical Simulations
The Gillespie algorithm, which was proposed by [55], is used to simulate the sample

path of the stochastic CTMC model formulated in this study. It simulates each transition
event sequentially but requires a significant amount of computation time. To study the
dynamics of cholera via vector transmission, both deterministic and CTMC stochastic
models are plotted on the same graphs, using parameter values in Table 6 for comparison
purposes for the state variables symptomatic infected hosts, asymptomatic infected hosts,
and infected vectors. The graphical solutions of the CTMC model with their corresponding
deterministic solutions are shown in Figure 4. The findings’ figures show that CTMC
model results for the dynamics of cholera are relatively close to deterministic model
solutions. The CTMC model solutions fluctuate around the solutions of the corresponding
deterministic model. This further suggests that the deterministic model’s dynamical
behaviors would not be impacted by the initial condition, but the CTMC model’s behaviors
would be heavily reliant on it. In Figure 4d,e, the symptomatic infected host (red curve) and
infected vector (blue curve) as well as asymptomatic infected host (pink curve) and infected
vector (blue curve) are drawn. After a certain period, it can be seen in the figure that the
symptomatic infected host, asymptomatic infected host, and infected vector curve hit the
x-axis. Thus, the symptomatic infected host, asymptomatic infected host, and infected
vector vanish gradually.
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(a) (b)

(c) (d)

(e)

Figure 4. Solutions for the CTMC model and the associated deterministic model that exhibit dynamic
behaviors. The CTMC model solutions under five randomly chosen sample paths are shown by
the solid color curves, while the deterministic model solutions are represented by the matching
solid lines.

Probability of Cholera Disease Extinction or Outbreak

We determine the probability of disease extinction P0 under various initial condi-
tions. The initial size of the infectives determines the dynamics of cholera, as shown in
Table 7. Thus, even though the stochastic threshold ρ(M) > 1, cholera may vanish or
persist. As shown in Table 7, the probability of cholera disease extinction is the largest
(P0 ≈ 0.8384) when (Ish(0) = 0, Iah(0) = 0, Ev(0) = 0, Iv(0) = 0, C(0) = 0, P(0) = 1),
the probability of disease prevalence (1 − P0 ≈ 0.1616), is the lowest. Furthermore, P0

is smaller (P0 ≈ 0.0525) if the disease is introduced by (Ish(0) = 1, Iah(0) = 1, Ev(0) =

1, Iv(0) = 1, C(0) = 1, P(0) = 1). In particular, when the number of all six infected groups
increases, the likelihood of disease extinction P0 decreases (P0 ≈ 0.0028). In other words,
the probability of a disease outbreak is very high (1 − P0 ≈ 0.9972) if all six infected groups
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are present at the onset of the epidemic process. The probability of a disease outbreak
is very high if cholera emerges from all infected classes, and the situation worsens if the
number of infectives increases, as shown in Table 7. The bacterial concentrations in con-
taminated/unsafe water play an important role because they infect a massive number of
housefly vectors in the environment [3–5]. Thus, it is suggested that any interventions
that focus on reducing the number of infected groups at the beginning of an outbreak are
essential for reducing the transmission of cholera.

Table 6. Parameter values.

Parameter Base Line Value Reference

bh 10 day−1 [56]
bv 1.066 day−1 Assumed
µh 0.005 year−1 [57]
µv 0.189 day−1 [58]
β 0.2143 day−1 [59]
k1 500 cells/day Assumed
k2 500 cells/day [57]
ξ1 20 cell/ml per day [60]
ξ2 20 cell/ml per day Assumed
α1 12 cells mL−1d−1 per vector [61]
ϵ 0.4 Assumed
d 0.015 [56]
γ1 0.14 per day [62]
γ2 0.5 per day [62]
q 0.7 [63]
r 0.3 [63]
ρ 0.8 Assumed
λ1 0.1 Assumed
λ2 0.9 Assumed
δ1 0.4 day−1 [64]
δ2 0.4 day−1 Assumed

Table 7. Probabilities of disease extinction and outbreak of the disease.

Ish(0) Iah(0) Ev(0) Iv(0) C(0) P(0) P0 1 − P0

1 0 0 0 0 0 0.5028 0.4972
0 1 0 0 0 0 0.5024 0.4976
0 0 1 0 0 0 0.6036 0.3964
0 0 0 1 0 0 0.8177 0.1823
0 0 0 0 1 0 0.5023 0.4977
0 0 0 0 0 1 0.8384 0.1616
1 1 0 0 0 0 0.2526 0.7474
1 1 1 0 0 0 0.1525 0.8475
1 1 1 1 0 0 0.1247 0.8753
1 1 1 1 1 0 0.0626 0.9374
1 1 1 1 1 1 0.0525 0.9475
2 2 2 2 2 2 0.0028 0.9972

6. Discussion
In this paper, a stochastic CTMC model was developed, accounting for the demo-

graphic diversity that emerges in the dynamics of cholera transmission (including changes
related to population dynamics, including births, infections, deaths, recovery, and relapses,
among others). The integration of Monte Carlo sampling, LHS/PRCC sensitivity analysis,
and deterministic model comparisons in our formulated model ensured the robustness of
the numerical simulations in estimating the probability of cholera extinction under varying
initial conditions and intervention scenarios. The probability of disease extinction and
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outbreaks, as well as the model’s stochastic threshold ρ(M), were determined by the use of
multitype branching processes. In general, when R0 < 1 and ρ(M) < 1, the disease would
become extinct for both the stochastic and deterministic models. For the stochastic model,
disease extinction is possible if ρ(M) > 1. On the other hand, for the deterministic model,
the disease would persistent if R0 > 1. We used numerical simulations to validate our
analytical findings and represent them graphically in the CTMC stochastic model. We also
obtained the likelihood of disease extinction or an outbreak under various initial conditions.
It is clear that an acceptable agreement is found between the dynamical behavior of the
deterministic and CTMC stochastic models. Our results in Figure 4 show that the CTMC
model’s results for the dynamics of cholera are comparatively close to deterministic model
solutions. The solutions of the CTMC model show fluctuations in the solutions of the
corresponding deterministic model. As one of the primary asymptotic differences between
deterministic and stochastic models, the intrinsic demographic stochasticity of stochastic
models may be the cause of this discrepancy, which suggests that the dynamical behaviors
of the CTMC model would be strongly influenced by the initial conditions [25,65]. Inte-
grating LHS/PRCC sensitivity analysis with the stochastic CTMC model simulations for
cholera transmission dynamics is powerful but also challenging due to the discrepancy
between deterministic sensitivity and stochastic behavior. Apart from showing behavior
that is essentially the same to that of the deterministic model, the stochastic CTMC model
also has a positive probability association to disease extinction, regardless of the value of
R0. However, if R0 > 1, disease extinction takes an exceedingly long time [17]. It is further
shown that after a certain period of time, the number of infected hosts and vectors steadily
declines. Thus, the strategy’s efficacy in minimizing and progressively preventing disease
outbreaks is guaranteed by our preferred model. This study can be further extended in the
future by examining the cross transmission of fly vectors. Another area of research word
investigating could encompass the impacts of environmental and seasonal variability on
disease transmission trajectories, such as seasonal rainfall, air temperature, moisture levels,
and the other climatic factors that may affect the transmission dynamics of cholera. Hence,
it is important to develop a stochastic CTMC model in order to investigate the effects of
seasonal variation on cholera transmission dynamics [29]. The integration of stochastic
CTMC, climate variability, and adaptive interventions is crucial for improving cholera
extinction and persistence predictions. Future cholera modeling studies should also focus
on developing a model that incorporate spatial transmission dynamics to capture regional
heterogeneity, real-time adaptive models to inform public health interventions more ef-
fectively, and leverage machine learning and Bayesian methods for improved parameter
estimation and outbreak forecasting.

7. Conclusions
In this study, a stochastic CTMC model was formulated and analyzed to gain insights

into the transmission dynamics of cholera. We considered a sensitivity analysis for each
parameter of the model. Beyond focusing on reducing initial infectives, µv (natural vector
death rate), λ2 (rates of ingesting vibrios from the contaminated/unsafe environment to
a vector), ρ (infectious rate of a vector), and bh (birth or recruitment rate by a human) are
important parameters that should be considered for effective cholera control strategies. The
multitype branching process was adopted to derive the corresponding stochastic threshold
ρ(M) for the CTMC model, which determines the condition for the extinction or outbreak
of cholera. Generally, cholera vanishes if ρ(M) < 1 and R0 < 1. However, if ρ(M) > 1, then
there is a chance of a major disease outbreak or extinction depending on the initial number
of infectives at the beginning of the disease outbreak. On the other hand, if R0 > 1, cholera
persists. We established theoretical results and represented them graphically in the CTMC
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stochastic model. Our simulation findings show that an acceptable agreement is found
between the dynamical behavior of the deterministic and stochastic models. Furthermore,
it is demonstrated that the number of infected individuals and vectors will be reduced
gradually after a certain period, showing our preferred CTMC model’s effectiveness in
reducing and gradually preventing cholera outbreaks. The probability of disease extinc-
tion or an outbreak is determined. We found that the disease extinction probability is
higher if the disease emerges from infected vectors rather than infected individuals. The
results showed that initial conditions determine the probability of disease extinction or an
outbreak, with a higher number of initial infections leading to a lower chance of cholera
extinction or a higher chance of a significant cholera outbreak. In order to lower the risk
of cholera transmission, the results suggest that factors which raise infection parameters
should be managed. Our findings also show that the probability of cholera extinction is
higher if it arises from bacterial concentrations in non-contaminated/safe water, and there
is a high likelihood of a disease outbreak if it arises from all six infected compartments.
Therefore, to control cholera, more efforts should be directed to maintaining personal hy-
giene, increasing recovery rates through oral rehydration therapy and antibiotics, targeted
vaccination campaigns, and decontaminating the environment to kill Vibrio cholerae bacteria.
Our future work will focus on establishing a stochastic CTMC model to explore the effects
of environmental and seasonal variations on the dynamics of cholera transmission, such as
seasonal rainfall, air temperature, moisture levels, and other climatic factors, which influ-
ence cholera transmission trajectories. Considering the complexity of cholera transmission
dynamics, spatial or temporal variations in disease transmission will be also taken into
account within the framework of the stochastic CTMC model in the future studies.
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Appendix A
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Figure A1. PRCC plots for infected vectors.
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